Real-time prediction of formation pressure gradient while drilling - bdsthanhhoavn.com

Real-time prediction of formation pressure gradient while drilling

  • Mouchet, J. P. & Mitchell, A. Abnormal Pressures While Drilling (Elf Aquitaine, 1989).

    Google Scholar 

  • Rabia, H. Well Engineering & Construction Hussain Rabia (Entrac Consulting, 2002).

    Google Scholar 

  • Tingay, M. R. P., Hillis, R. R., Swarbrick, R. E., Morley, C. K. & Damit, A. R. Origin of overpressure and pore-pressure prediction in the Baram province, Brunei. Am. Assoc. Petrol. Geol. Bull. 93, 51–74 (2009).

    Google Scholar 

  • Zoback, M. D. Reservoir Geomechanics. Reservoir Geomechanics. https://doi.org/10.1017/CBO9780511586477 (Cambridge University Press, 2007).

  • Hottman, C. E. & Johnson, R. K. Estimation of formation pressures from log-derived shale properties. J. Petrol. Technol. 17, 1754 (1965).

    Google Scholar 

  • Matthews, W. R. & Kelly, J. How to predict formation pressure and fracture gradient from electric and sonic logs. Oil Gas J. (1967).

  • Pennebaker, E. S. Detection of abnormal-pressure formations from seismic-field data. in Drilling and Production Practice. 184–191. (American Petroleum Institute, 1968).

  • Eaton, B. A. The Equation for Geopressure Prediction from Well Logs. https://doi.org/10.2118/5544-ms (Society of Petroleum Engineers (SPE), 1975).

  • Gardner, G. H. F., Gardner, L. W. & Gregory, A. R. Formation velocity and density—The diagnostic basics for stratigraphic traps. Geophysics 39, 770–780 (1974).

    ADS 
    Article 

    Google Scholar 

  • Bowers, G. L. Data : Accounting for overpressure mechanisms besides undercompaction. Soc. Petrol. Eng. (SPE) 27488, 89–95 (1995).

    Google Scholar 

  • López, J. L., Rappold, P. M., Ugueto, G. A., Wieseneck, J. B. & Vu, C. K. Integrated shared earth model: 3D pore-pressure prediction and uncertainty analysis. Leading Edge (Tulsa, OK) 23, 52–59 (2004).

    Article 

    Google Scholar 

  • Gutierrez, M. A., Braunsdorf, N. R. & Couzens, B. A. Calibration and ranking of pore-pressure prediction models. Leading Edge (Tulsa, OK) 25, 1516–1523 (2006).

    Article 

    Google Scholar 

  • Foster, J. B. & Whalen, H. E. Estimation of formation pressures from electrical surveys—Offshore Louisiana. SPE Reprint Ser. 18, 57–63 (1966).

    Google Scholar 

  • Ham, H. H. A Method of Estimating Formation Pressures from Gulf Coast Well Logs. Vol. 16. (1966).

  • Eaton, B. A. The equation for geopressure prediction from well logs. OnePetro https://doi.org/10.2118/5544-ms (1975).

    Article 

    Google Scholar 

  • Eaton, B. A. The effect of overburden stress on geopressure prediction from well logs. J. Petrol. Technol. 24, 929–934 (1972).

    Article 

    Google Scholar 

  • Zhang, J. Pore pressure prediction from well logs: Methods, modifications, and new approaches. Earth Sci. Rev. 108, 50–63 (2011).

    ADS 
    Article 

    Google Scholar 

  • Lang, J., Li, S. & Zhang, J. Wellbore stability modeling and real-time surveillance for deepwater drilling to weak bedding planes and depleted reservoirs. in SPE/IADC Drilling Conference, Proceedings. Vol. 1. 145–162. (Society of Petroleum Engineers (SPE), 2011).

  • Bingham, M. G. A new approach to interpreting rock drillability. Oil Gas J. (1965) (reprinted).

  • Jorden, J. R. & Shirley, O. J. Application of drilling performance data to overpressure detection. SPE Reprint Ser. 18, 19–26 (1967).

    Google Scholar 

  • Rehm, B. & McClendon, R. Measurement of Formation Pressure from Drilling Data. https://doi.org/10.2118/3601-ms (Society of Petroleum Engineers (SPE), 1971).

  • Contreras, O., Hareland, G. & Aguilera, R. An innovative approach for pore pressure prediction and drilling optimization in an abnormally subpressured basin. SPE Drill. Complet. 27, 531–545 (2012).

    CAS 
    Article 

    Google Scholar 

  • Kalogirou, S. A. Artificial intelligence for the modeling and control of combustion processes: A review. Prog. Energy Combust. Sci. 29, 515–566 (2003).

    CAS 
    Article 

    Google Scholar 

  • Russell, S. J. & Norvig, P. Artificial Intelligence: A Modern Approach. 3rd edn. (2016).

  • Mohaghegh, S. Virtual-intelligence applications in petroleum engineering: Part I—Artificial neural networks. J. Petrol. Technol. 52, 64–73 (2000).

    Article 

    Google Scholar 

  • Elsafi, S. H. Artificial neural networks (ANNs) for flood forecasting at Dongola Station in the River Nile, Sudan. Alex. Eng. J. 53, 655–662 (2014).

    Article 

    Google Scholar 

  • Doraisamy, H., Ertekin, T. & Grader, A. S. Key parameters controlling the performance of neuro-simulation applications in field development. in Proceedings of the SPE Annual Western Regional Meeting. 233–241. https://doi.org/10.2118/51079-ms (Society of Petroleum Engineers (SPE), 1998).

  • Alsaihati, A., Elkatatny, S. & Abdulraheem, A. Real-time prediction of equivalent circulation density for horizontal wells using intelligent machines. ACS Omega 6, 934–942 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gamal, H., Abdelaal, A. & Elkatatny, S. Machine learning models for equivalent circulating density prediction from drilling data. ACS Omega 8, 4363 (2021).

    Google Scholar 

  • Gamal, H., Abdelaal, A., Alsaihati, A., Elkatatny, S. & Abdulraheem, A. Artificial Neural Network Model for Predicting the Equivalent Circulating Density from Drilling Parameters. (2021).

  • Abdelaal, A., Elkatatny, S. & Abdulraheem, A. Formation Pressure Prediction From Mechanical and Hydraulic Drilling Data Using Artificial Neural Networks (OnePetro, 2021).

    Google Scholar 

  • Abdelaal, A., Elkatatny, S. & Abdulraheem, A. Data-driven modeling approach for pore pressure gradient prediction while drilling from drilling parameters. ACS Omega https://doi.org/10.1021/acsomega.1c01340 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gamal, H., Elkatatny, S., Alsaihati, A. & Abdulraheem, A. Intelligent prediction for rock porosity while drilling complex lithology in real time. Comput. Intell. Neurosci. 2021, 14 (2021).

    Article 

    Google Scholar 

  • Abdelaal, A., Ibrahim, A. F. & Elkatatny, S. Data-driven approach for resistivity prediction using artificial intelligence. J. Energy Resour. Technol. 144, 103003 (2022).

    CAS 
    Article 

    Google Scholar 

  • Alsabaa, A. & Elkatatny, S. Improved tracking of the rheological properties of max-bridge oil-based mud using artificial neural networks. ACS Omega 6, 15816–15826 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Abdelgawad, K., Elkatatny, S., Moussa, T., Mahmoud, M. & Patil, S. Real-time determination of rheological properties of spud drilling fluids using a hybrid artificial intelligence technique. J. Energy Resour. Technol. Trans. ASME 141, 3 (2019).

    Article 
    CAS 

    Google Scholar 

  • Gowida, A., Elkatatny, S., Ramadan, E. & Abdulraheem, A. Data-driven framework to predict the rheological properties of CaCl2 brine-based drill-in fluid using artificial neural network. Energies (Basel) 12, 10 (2019).

    Google Scholar 

  • Gomaa, I., Elkatatny, S. & Abdulraheem, A. Real-time determination of rheological properties of high over-balanced drilling fluid used for drilling ultra-deep gas wells using artificial neural network. J. Nat. Gas Sci. Eng. 77, 103224 (2020).

    Article 

    Google Scholar 

  • Alsabaa, A., Gamal, H., Elkatatny, S. & Abdulraheem, A. Real-time prediction of rheological properties of invert emulsion mud using adaptive neuro-fuzzy inference system. Sensors 20, 1669 (2020).

    ADS 
    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • Gowida, A., Elkatatny, S. & Gamal, H. Unconfined compressive strength (UCS) prediction in real-time while drilling using artificial intelligence tools. Neural Comput. Appl. https://doi.org/10.1007/s00521-020-05546-7 (2021).

    Article 

    Google Scholar 

  • Mahmoud, A., Elkatatny, S., Chen, W. & Abdulraheem, A. Estimation of oil recovery factor for water drive sandy reservoirs through applications of artificial intelligence. Energies (Basel) 12, 3671 (2019).

    CAS 
    Article 

    Google Scholar 

  • Ahmed, A., Elkatatny, S., Gamal, H. & Abdulraheem, A. Artificial intelligence models for real-time bulk density prediction of vertical complex lithology using the drilling parameters. Arab. J. Sci. Eng. https://doi.org/10.1007/S13369-021-05537-3 (2021).

    Article 

    Google Scholar 

  • Gowida, A., Elkatatny, S. & Abdulraheem, A. Application of artificial neural network to predict formation bulk density while drilling. Petrophysics 60, 660–674 (2019).

    Google Scholar 

  • Fatehi, M. & Asadi, H. H. Data integration modeling applied to drill hole planning through semi-supervised learning: A case study from the Dalli Cu-Au porphyry deposit in the central Iran. J. Afr. Earth Sc. 128, 147–160 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Moazzeni, A. & Haffar, M. A. Artificial intelligence for lithology identification through real-time drilling data. J. Earth Sci. Clim. Change 06, 1–4 (2015).

    Google Scholar 

  • Zazoun, R. S. Fracture density estimation from core and conventional well logs data using artificial neural networks: The Cambro-Ordovician reservoir of Mesdar oil field, Algeria. J. Afr. Earth Sci. 83, 55–73 (2013).

    ADS 
    Article 

    Google Scholar 

  • Siddig, O. & Elkatatny, S. Workflow to build a continuous static elastic moduli profile from the drilling data using artificial intelligence techniques. J. Petrol. Explor. Product. Technol. 11, 3713–3722 (2021).

    Article 

    Google Scholar 

  • Siddig, O. M., Al-Afnan, S. F., Elkatatny, S. M. & Abdulraheem, A. Drilling data-based approach to build a continuous static elastic moduli profile utilizing artificial intelligence techniques. J. Energy Resour. Technol. 144, 2 (2022).

    Google Scholar 

  • Ahmed, A., Elkatatny, S. & Alsaihati, A. Applications of artificial intelligence for static Poisson’s ratio prediction while drilling. Comput. Intell. Neurosci. 2021, 10081 (2021).

    Article 

    Google Scholar 

  • Siddig, O., Gamal, H., Elkatatny, S. & Abdulraheem, A. Applying different artificial intelligence techniques in dynamic Poisson’s ratio prediction using drilling parameters. J. Energy Resour. Technol. 144, 7 (2022).

    Google Scholar 

  • Siddig, O., Gamal, H., Elkatatny, S. & Abdulraheem, A. Real-time prediction of Poisson’s ratio from drilling parameters using machine learning tools. Sci. Rep. 11, 1–13 (2021).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Al-Abdul Jabbar, A., Elkatatny, S., Mahmoud, M. & Abdulraheem, A. Predicting formation tops while drilling using artificial intelligence. in Society of Petroleum Engineers-SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition 2018, SATS 2018. https://doi.org/10.2118/192345-ms (Society of Petroleum Engineers, 2018).

  • Li, W., Yan, T. & Liang, Y. Pressure prediction technology of the deep strata based On BP neural network. in Advanced Materials Research. Vol. 143–144. 28–31. (Trans Tech Publications Ltd, 2010).

  • Hu, L. et al. A new pore pressure prediction method-back propagation artificial neural network. Electron. J. Geotech. Eng. 18, 4093–4107 (2013).

    Google Scholar 

  • Keshavarzi, R. & Jahanbakhshi, R. Real-time prediction of pore pressure gradient through an artificial intelligence approach: A case study from one of middle east oil fields. Eur. J. Environ. Civ. Eng. 17, 675–686 (2013).

    Article 

    Google Scholar 

  • Aliouane, L., Ouadfeul, S.-A. & Boudella, A. Pore pressure prediction in shale gas reservoirs using neural network and fuzzy logic with an application to Barnett Shale. EGUGA 17, 2723 (2015).

    Google Scholar 

  • Rashidi, M. & Asadi, A. An artificial intelligence approach in estimation of formation pore pressure by critical drilling data. in 52nd U.S. Rock Mechanics/Geomechanics Symposium (2018).

  • Ahmed, A., Elkatatny, S., Ali, A., Mahmoud, M. & Abdulraheem, A. New model for pore pressure prediction while drilling using artificial neural networks. Arab. J. Sci. Eng. 44, 6079–6088 (2018).

    Article 

    Google Scholar 

  • Ahmed, A., Elkatatny, S., Ali, A. & Abdulraheem, A. Comparative analysis of artificial intelligence techniques for formation pressure prediction while drilling. Arab. J. Geosci. 12, 7 (2019).

    Article 
    CAS 

    Google Scholar 

  • Thunder, M., Moore, D. S. & McCabe, G. P. Introduction to the practice of statistics. Math. Gaz. 79, 252 (1995).

    Article 

    Google Scholar 

  • Dawson, R. How significant is a boxplot outlier?. J. Stat. Educ. 19, 2 (2011).

    Article 

    Google Scholar 

  • Bourgoyne, J. A. T., Millheim, K. K., Chenevert, M. E. & Young, J. F. S. Applied Drilling Engineering. Vol. 2. (1986).

  • Head, A. L. A drillability classification of geological formation. in World Petroleum Congress Proceedings. Vol. 1951. 42–57. (OnePetro, 1951).

  • Mensa-Wilmot, G., Calhoun, B. & Perrin, V. P. Formation Drillability-Definition, Quantification and Contributions to Bit Performance Evaluation. https://doi.org/10.2118/57558-ms (Society of Petroleum Engineers (SPE), 1999).

  • Aghli, G., Moussavi-Harami, R., Mortazavi, S. & Mohammadian, R. Evaluation of new method for estimation of fracture parameters using conventional petrophysical logs and ANFIS in the carbonate heterogeneous reservoirs. J. Petrol. Sci. Eng. 172, 1092–1102 (2019).

    CAS 
    Article 

    Google Scholar 

  • Leave a Comment